TIME SERIES FORECASTING OF LQ45 STOCK INDEX USING ARIMA: INSIGHTS AND IMPLICATIONS
DOI:
https://doi.org/10.51170/jmabr.v1i1.160Keywords:
ARIMA Modeling, Time Series Forecasting, LQ-45 Index, RMSE, Stock Market PredictionAbstract
This study aims to analyze and forecast the movement of the LQ45 stock index in the Indonesian stock market using the ARIMA (AutoRegressive Integrated Moving Average) model. Through rigorous time series analysis and model selection procedures in SPSS, the ARIMA (4,3,6) model was identified as the most optimal to capture the complex dynamics of the LQ45 index. The model's parameters indicate that the index exhibits a high degree of integration (third differencing) and is influenced by multiple autoregressive and moving average terms. Forecasting results demonstrate that ARIMA (4,3,6) provides accurate short- to medium-term predictions, with a good balance of fit and error metrics. These findings have practical implications for investors seeking data-driven strategies for portfolio management and risk mitigation. Furthermore, the study contributes to the academic field by offering a robust modeling approach for stock index forecasting, encouraging further research to integrate ARIMA with other advanced models and external economic factors for enhanced predictive performance.
References
Areef, M. (2020). Price Behaviour and Forecasting of Onion Prices in Kurnool Market, Andhra Pradesh State. Economic Affairs, 65(1). https://doi.org/10.30954/0424-2513.1.2020.6
Febrianti, D. R., Tiro, M. A., & Sudarmin, S. (2020). Metode Vector Autoregressive (VAR) dalam Menganalisis Pengaruh Kurs Mata Uang Terhadap Ekspor Dan Impor Di Indonesia. VARIANSI Journal of Statistics and Its Application on Teaching and Research, 3(1), 23. https://doi.org/10.35580/variansiunm14645
Ko’imah, S., & Damayanti, D. (2020). Pengaruh Leverage, Earning Variability, Likuidutas dan Kinerja Perusahaan terhadap Risiko Sistematis pada Perusahaan yang Tercatat pada Index LQ 45 di Bursa Efek Indonesia. INOBIS Jurnal Inovasi Bisnis Dan Manajemen Indonesia, 4(1), 113. https://doi.org/10.31842/jurnalinobis.v4i1.170
Kurniasi, A. A., Saptari, M. A., & Ilhadi, V. (2021). Aplikasi Peramalan Harga Saham Perusahaan Lq45 Dengan Menggunakan Metode Arima. Sisfo Jurnal Ilmiah Sistem Informasi, 5(1). https://doi.org/10.29103/sisfo.v5i1.4849
Maryam, M., Rahmawati, R., & Asrirawan, A. (2022). Peramalan Jumlah Kasus COVID-19 di Provinsi Sulawesi Barat Menggunakan Model Hybrid ARIMA Backpropagation. SAINTIFIK, 8(1), 20. https://doi.org/10.31605/saintifik.v8i1.361
Pujiastuti, C. E., & Riyono, J. (2020). PELATIHAN PEMBUATAN ANALISIS RUNTUN WAKTU UNTUK OPTIMASI PRODUK DENGAN MINITAB. Jurnal Abdi Masyarakat Indonesia (JAMIN), 2(2). https://doi.org/10.25105/jamin.v2i2.7505
Valiant, K. (2020). SISTEM PREDIKSI HARGA SAHAM LQ45 DENGAN RANDOM FOREST CLASSIFIER. https://katalog.ukdw.ac.id/2409/
Wandira, M. A., & Saputra, W. S. (2023). DETERMINAN PERUBAHAN STOCK PRICE VOLATILITY PADA PERUSAHAAN LQ45. Jurnal Akuntansi Bisnis, 16(2), 248. https://doi.org/10.30813/jab.v16i2.4328
Wibisono, D. A., Anggraeni, D., & Hadi, A. F. (2019). PERBAIKAN MODEL SEASONAL ARIMA DENGAN METODE ENSEMBLE KALMAN FILTER PADA HASIL PREDIKSI CURAH HUJAN. Majalah Ilmiah Matematika Dan Statistika, 19(1), 9. https://doi.org/10.19184/mims.v19i1.17262
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bayu Laksma Pradana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.